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Abstract Origin shifts performed on the density functions (DF) permit to express
the Hohenberg–Kohn theorem (HKT) as a consequence of the variational principle.
Upon ordering the expectation values of Hermitian operators, an extended variational
principle can be described using origin shifted DF. Under some restrictions, HKT can
be extended for some specific Hermitian operators.
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1 Introduction

Since the publication of Hohenberg–Kohn theorem (HKT) [1] and its mathematical
development by Lieb [2], the structure and properties of HKT has been studied by
many researches in the field, including the original authors, see for example references
[3–13]. Coincident with the turn of the century we published some work [14] on HKT
and accompanied it by the discussion of an equivalent matrix theorem [15]. This
work was followed by studies on the nature of the relation between wave and density
functions in the framework of Schrödinger equation formalism [16–18].

Later on, our interest on HKT was aroused by previous work of Mezey on holo-
graphic electronic density theorem (HEDT) [19] and the link of the HEDT with HKT
disclosed by the same author [20]. Such previous Mezey’s work has been the inspira-
tion of several papers [21–24] issued from our laboratory.

Recent experience [25–28] indicates that, when dealing with density function (DF)
sets composed by two or more elements, one might geometrically rearrange the DF set
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members within the containing Hilbert semispace [29–31]. This can be done shifting
them with respect to another chosen DF-like form, which can be selected taking any
element within the DF set or chosen as being a composite of them, for instance, the
centroid DF attached to the studied DF set or any other convex combination of the DF
set elements.

The present work corresponds to the analysis of another application of the men-
tioned DF origin shift technique. For this purpose it will be also used the formalism
developed several years ago concerning expectation values and DF [16,32–34]. Within
such formal development, considering any arbitrary quantum system, it is used the fact
that any Hermitian operator expectation value can be computed with the application of
the operator on the appropriate DF, followed by integration over the existence domain.
Such expectation value formalism has to be considered the basic mathematical struc-
ture complementing the origin shift in the present study.

Therefore, after some introduction to the DF origin shift technique, the aim of the
present work first will be to describe how the variational principle can be extended
to any Hermitian operator and second how Hohenberg–Kohn theorem (HKT) can
be deduced from this mathematical formalism. It will be proved how HK theorem
can be inferred from the variational principle, which in turn can be considered as a
consequence of the involved operator expectation values ordering.

2 Origin shift of DF sets

2.1 DF sets and convex combinations

In fact, as it has been commented in the introduction, one can choose any function to
be used as origin shift of a DF set, provided it bears the main features DF possess. So,
composite functions obtained using any convex linear combination of DF [25–28] can
be considered as good candidates for origin shift purposes.

A set of DF can be written as: P = {ρI |I = 1, N }, where the set elements are
non-negative functions with well-defined positive definite Minkowski norms1: ∀I :
〈ρI 〉 = νI ∈ R+. A convex set of positive real numbers: A = {αI |I = 1, N } ⊂ [0, 1]
has the essential additional property:

∑
I αI = 1, which it is the same to consider the

coefficient set A as a discrete probability distribution.
Then, taking these definitions into account, a convex linear combination of DF can

be written as:

ρ =
∑

I

αI ρI → 〈ρ〉 =
∑

I

αI 〈ρI 〉 =
∑

I

αI vI ∈ R+, (1)

which proves that the Minkowski norm of the composite function can be taken as a
mean value of the norms of the DF set elements. Note that if the DF set P corresponds

1 Any integrable multivariate function f (r) can be used with the symbol: 〈 f (r)〉 = ∫
D f (r) dr, which

will be employed along this paper. If the integral result is positive definite, then 〈 f 〉 corresponds to the
Minkowski norm of the involved function, if not it can be called a Minkowski pseudo-norm.
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to shape functions, for which: ∀I : 〈ρI 〉 = 1, then the convex linear combination (1)
is also like a shape function as in this case will hold the norm: 〈ρ〉 = 1.

2.2 Origin shifts in a minimal DF set

Origin shift of DF sets essentially uses DF differences [25–28]. Hence, in order to
study a minimal origin shift scenario, at least a two DF set, say: P = {ρ0; ρa}, is
needed to be taken into account as origin shift candidate, but providing a schematic
but sufficiently adequate DF origin shift example.

Then, considering the case of a DF set constructed with only two elements, one can
build the convex family of functions:

∀α ∈ [0, 1] : ρα = αρa + (1− α) ρ0 = ρ0 + α (ρa − ρ0) ,

or alternatively an equivalent convex family can be also constructed:

∀β ∈ [0, 1] : ρβ = βρ0 + (1− β) ρa = ρa + β (ρ0 − ρa) .

In both convex linear combination definitions the most relevant role is played by the
difference of the two involved DF in the set:

ζa0 = ρa − ρ0 = −ζ0a ↔ ζ0a = ρ0 − ρa = −ζa0;

Such a result meaning that upon origin shift, the DF original pair becomes a unique
shifted DF (SDF). This can be formally written as a transformation of the original DF
set:

� (P) = � {ρ0; ρa} → {ζ0a} .

The common property to any DF consists of being definite non-negative. However, any
resulting SDF possess a non-definite character. Such situation designs the essential
features of the origin shift process and the SDF main peculiarity with respect to any
attached DF.

Now it is also interesting to note the effect of the previously defined convex linear
combinations, when employed as origin shifts. Recalling the earlier SDF obtained in
the minimal DF set made of two DF as elements:

ζ = ζa0 →−ζ = ζ0a,

then it can be also written:

ρ0 − ρα = α (ρ0 − ρa) = −αζ

ρ0 − ρβ = (1− β) (ρ0 − ρa) = (β − 1) ζ,
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and alternatively

ρa − ρα = (1− α) (ρa − ρ0) = (1− α) ζ

ρa − ρβ = β (ρa − ρ0) = βζ.

The equalities shown above, demonstrate that in general, origin shifts yield, when
performed upon any two DF set P, a unique scalar multiple of the attached SDF: ζ .

2.3 Centroid shift

As a particular case of the previously discussed two DF convex combinations, the
centroid DF can be constructed in the following way:

ρC = 1

2
(ρ0 + ρa) .

Then the origin shifts produced by this centroid DF can be written like a particular
result of the general ones, as obtained in the previous discussion, that is:

ρ0 − ρC = ρ0 − 1

2
(ρ0 + ρa) = 1

2
(ρ0 − ρa) = −1

2
ζ

ρa − ρC = ρa − 1

2
(ρ0 + ρa) = 1

2
(ρa − ρ0) = 1

2
ζ.

Besides the fact that non-negative definition of the DF elements is lost in SDF sets,
this last result is also consistent with a universal property of DF sets (and in general
of any kind of vector sets) [25], which states that upon any origin shift, the original
linearly independent DF set is reduced in one dimension.

Thus, when considering sets of two DF, the origin shift transforms them into a
SDF set of only one element, without a proper definite structure and lacking of strictly
positive Minkowski norm, but a pseudo-norm. It is easy to see that: 〈ζ 〉 = 〈ρa − ρ0〉 =
〈ρa〉 − 〈ρ0〉 = va − v0 ∈ R.

2.4 Comparison of two DF

2.4.1 Euclidian distance

At the light of these preliminary findings, the comparison of two DF seems irrelevant.
This dual comparison, as a result of the previous discussion, can be resumed by a unique
SDF, which is the difference of the compared ones. Comparison of DF, attached to
the same quantum object system (in molecular structures, for instance, this can be
obtained by different procedures or AO basis set levels), in fact produces a SDF with
a null Minkowski pseudo-norm.
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However, the SDF selfsimilarity, which is coincident with the Euclidian norm,
yields:

〈|ζ |2〉 = 〈|ρa − ρ0|2〉 = 〈|ρa |2〉 − 2〈ρ0ρa〉 + 〈|ρ0|2〉
= Zaa − 2Z0a + Z00 = D2

0a .

So it is found a final expression, which is coincident with the squared Euclidian distance
between both DF, and at the same time measures the degree of dissimilarity between
the two initial DF.

An interesting case within LCAO MO framework is constituted by two DF of the
same quantum object electronic state, obtained under the same basis set, but using
different computational methods. In this circumstance the SDF can be written as:

ζ =
∑

μ

∑

v

(
D0,μν − Da,μν

) |μ〉 〈ν| =
∑

μ

∑

v

�0a;μν |μ〉 〈ν| (2)

where in the SDF expression appear the density coordinates matrices2: D0 ={
D0,μν

} ; Da =
{

Da,μν

}
.

2.4.2 Minkowski norm

Because the difference function ζ as defined in Eq. (2) has the Minkowski pseudo-norm
property: 〈ζ 〉 = 0, this signifies that the tensors of the density coordinates difference
� = {

�0a;μν

}
and overlap S = {

Sμν = 〈|μ〉 〈ν|〉
}

act as two orthogonal vectors,
a fact which can be written with the convention3: 〈�∗S〉 = 0. In other words, the
overlap matrix can be considered orthogonal to the difference of the density coordinates
matrices obtained with different procedures under the same basis set for the same state.

2.4.3 Euclidian norm

On the other hand, the Euclidian norm of the difference function ζ , which is coincident
with the squared Euclidian distance as commented before, will produce a positive
definite real number:

〈|ζ |2〉 =
∑

μ

∑

ν

∑

λ

∑

σ

�0a;μν�0a;λσ 〈μνλσ 〉 .

2 The term density coordinates matrix is used after the definition of this terminology [36] and for the first
time here to avoid confusion. The current literature uses the shorter name density matrix instead. However,
this latter name is ambiguous, as it is also used in reference to some functional aspect related with the
possible matrix-like structure which can be associated to the DF.
3 The symbol: 〈A ∗ B〉 = ∑

I
∑

J AI J BI J , meaning the complete sum of an inward matrix (or tensor)
product is used here. For more details see [37].
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2.4.4 Cioslowski’s similarity approach

In a simplified computation of the above Euclidian norm, as Cioslowski suggested
[35], the following possible expression can be set up:

〈|ζ |2〉C =
∑

μ

∑

ν

∑

λ

∑

σ

�0a;μν�0a;λσ Sμσ Sλν

=
∑

ν

∑

σ

(
∑

μ

�0a;μν Sμσ

) (
∑

λ

�0a;λσ Sλν

)

=
∑

ν

∑

σ

T0a;νσ T0a;σν =
〈
T0a∗TT

0a

〉

which produces a final result corresponding to the Euclidian norm of the matrix:

T0a =
{

T0a;νσ =
∑

μ

�0a;μν Sμσ

}

.

Such a result proves Cioslowski procedure cannot be associated to a clear similarity–
dissimilarity index, but just to a scalar product of a matrix by itself, that is: a Euclidian
norm.

2.4.5 Centroid shift of an arbitrary set of DF

Given an arbitrary cardinality set of DF: P = {ρI |I = 1, N } one can always define a
centroid DF, just averaging the elements of P:

ρC = N−1
∑

I

ρI → 〈ρC 〉 = N−1
∑

I

〈ρI 〉 = N−1
∑

I

vI = vC

Then, the set P can be origin shifted with respect the above defined centroid DF:

∀I : ζI = ρI − ρC → Z = {ζI |I = 1, N }

producing the set Z made of SDF. Then it can also be written:

∀I : ζI =
(

1− N−1
)

ρI − N−1
∑

J 
=I

ρJ = N−1

⎛

⎝(N − 1) ρI −
∑

J 
=I

ρJ

⎞

⎠

= N−1

(

NρI −
∑

J

ρJ

)

= N−1 (NρI − ρC ) .

Such a result shows that every centroid SDF corresponds to the averaged difference
between each DF in P repeated N times and the centroid DF. In fact, the selfsimilarity
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of every centroid SDF corresponds to the mean squared Euclidian distance between
the connected DF and the centroid DF. That is:

∀I : 〈|ζI |2〉 = N−2

(

N 2〈|ρI |2〉 − 2N
∑

J

〈ρI ρJ 〉 +
∑

J

∑

K

〈ρJ ρK 〉
)

= N−2

(

N 2 Z I I − 2N
∑

J

Z I J +
∑

J

∑

K

Z J K

)

which is an expression attached to the elements of the set P where the elements of the
overlap similarity matrix appear naturally:

Z = {Z I J = 〈ρI ρJ 〉 |I, J = 1, N } .

3 Hohenberg–Kohn theorem

In order to connect the DF origin shift mathematical structure with HKT, previous
work about a formulation of the theorem has to be remembered [14]. In this reference
the basic notions which will be used here are already developed and demonstrated, so
they will be not repeated.

Now, suppose that ρ0 is the exact DF for the non-degenerate ground state of some
Hamiltonian operator H . That is, one can write the expectation value expression for
the attached ground state energy as:

〈Hρ0〉 = E0.

At the same time, if ρa corresponds to an approximation of the exact DF: ρ0, then it
can be also written:

〈Hρa〉 = Ea → Ea ≥ E0 → Ea − E0 ≥ 0

→ 〈Hρa〉 − 〈Hρ0〉 ≥ 0→ 〈H (ρa − ρ0)〉 ≥ 0

→ 〈Hζ 〉 ≥ 0↔ −〈Hζ 〉 ≤ 0. (3)

Therefore, as a consequence of the variational principle, it can be said that any SDF
ζ , involving the approximate-exact pair of considered DF will yield a positive Hamil-
tonian expectation value.

The same can be said, when the approximate DF ρa is considered an exact DF of
some Hamiltonian: Ha , providing the energy: 〈Haρa〉 = Ea . It will be obtained in the
same way as before; shifting now the approximate DF ρ0, with ρa which can be now
considered that it will act as the exact DF:

〈Haρ0〉 = Ea
0 → Ea

0 ≥ Ea → Ea
0 − Ea ≥ 0

→ 〈Haρ0〉 − 〈Haρa〉 ≥ 0→ 〈Ha (ρ0 − ρa)〉 ≥ 0

→ 〈Ha (−ζ )〉 ≥ 0↔ 〈Haζ 〉 ≤ 0.
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A resulting expression which can be trivially summed up to the previous outcome in
Eq. (3) to yield:

〈(H − Ha) ζ 〉 ≥ 0 (4)

or alternatively:

〈(Ha − H) ζ 〉 ≤ 0.

Therefore, the Hamiltonian operator difference provides a definite non- negative or
non-positive expectation value with respect to the SDF. This result must be obtained
with an appropriate SDF difference order, inverted with respect to the involved Hamil-
tonian difference.

This can be easily demonstrated, because the expectation value non-negative prop-
erty is invariant, upon reversing the DF origin shift and the Hamiltonian orders in the
implied differences, that is:

〈(H − Ha) ζ 〉 ≥ 0→ 〈(Ha − H) (−ζ )〉 ≥ 0.

The Hamiltonian differences, appearing at the same time than the DF origin shifts,
might be considered as Hamiltonian operator origin shifts too. Thus, origin shift with
respect the systems 0 or a, performed in both Hamiltonians and DF, produce the same
non-negative or non-positive expectation value characteristic.

Formally, this general expectation value property constitutes the statement of a
generalized HKT. Formulated in this way though, HKT might also be simply con-
sidered as a consequence of the variational principle. Perhaps because of this general
variational connection, the well-known HKT could be renamed as a HK principle.

3.1 Extension of HKT

More than an extension, the following property, which will be now discussed, might
be seen as related to the HKT itself and thus it could be used as an argument leading
to it. Indeed, as it has already been shown in the previous paragraph, suppose first that
ρ0 is the exact DF for the non-degenerate ground state of some Hamiltonian operator
H . That is, one can write the expectation value expression for the attached ground
state energy as: 〈Hρ0〉 = E0.

At the same time, if A = {
ρa

I

}
corresponds to a set of approximations of the exact

DF: ρ0, then it can be written:

∀I : 〈Hρa
I

〉 = Ea
I → Ea

I ≥ E0 → Ea
I − E0 ≥ 0

→ 〈
Hρa

I

〉− 〈Hρ0〉 ≥ 0→ 〈
H

(
ρa

I − ρ0
)〉 ≥ 0→ 〈HζI 〉 ≥ 0. (5)

Because of this property of the SDF, and knowing any convex number set: K =
{κI } →∑

I κI = 1 ∧ ∀I : κI ∈ R+ then one can write a convex linear combination
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yielding a non-negative result under the considered Hamiltonian:

ζ =
∑

I

κI ζI → 〈Hζ 〉 =
∑

I

κI 〈HζI 〉 =
∑

I

κI
(
Ea

I − E0
) ≥ 0.

This last sum in the above result can be considered as an average of the energy positive
differences:

〈�E〉 =
∑

I

κI
(
Ea

I − E0
) =

∑

I

κI �EI

=
∑

I

κI Ea
I −

(
∑

I

κI

)

E0 =
∑

I

κI Ea
I−E0 =

〈
Ea 〉− E0 ≥ 0. (6)

Therefore, even considering an arbitrary number of convex combinations of an approx-
imate DF set, the meaning of the property associated to Eq. (6) is such that, the approx-
imate energy obtained as an expectation value of the exact Hamiltonian will be in any
case situated above the exact energy. This result constitutes a clear reformulation of
the variational principle.

If the approximate DF set A = {
ρa

I

}
with respect to some Hamiltonian H corre-

sponds to the exact DF for some attached Hamiltonian set:

H = {
Ha

I

}→ ∀I : 〈Ha
I ρa

I

〉 = Ea
I ,

then one can use the approximate energies obtained with the Hamiltonian set H acting
on the original DF ρ0 :

∀I : 〈Ha
I ρ0

〉 = E0I → E0I − Ea
I =

〈
Ha

I ρ0 − Ha
I ρa

I

〉

= 〈
Ha

I

(
ρ0 − ρa

I

)〉 = 〈
Ha

I (−ζI )
〉 ≥ 0.

Then, summing up this final relation with the previous result provided by Eq. (5), it is
obtained:

∀I : 〈Ha
I (−ζI )

〉+ 〈HζI 〉 =
〈(

H − Ha
I

)
ζI

〉 = 〈(
H − Ha

I

) (
ρa

I − ρ0
)〉 ≥ 0

proving that the HKT is fulfilled by all the approximate DF, which in turn are the exact
DF of some well-defined Hamiltonian set. In fact, this relation which holds for any
approximate DF, can be considered a generalization of the previous result, as provided
in Eq. (4).

4 Extended variational principle and expectation values ordering

The variational principle might be made extensive to other properties associated to
different Hermitian operators other than Hamiltonians.

To evidence this, suppose that a set of exact DF for some system is known and
symbolized as: P = {ρI |I = 0, . . . N . . . }. Suppose it is also known an Hermitian
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operator: �, which acting upon the DF set P produces the set of exact expectation
values:

∀I : 〈�ρI 〉 = ωI . (7)

One can freely choose the arbitrary order of the DF, according to the expectation
value set (7) ordering, which in turn can be written in such a way that the following
inequality sequence holds:

ω0 ≤ ω1 ≤ ω2 · · · ≤ ωN ≤ · · ·

Now, an approximate DF for the lower expectation value might be represented as a
convex combination of the exact DF set elements:

ρa ≈
N∑

I=0

αI ρI + O (N + 1)←
N∑

I=0

αI = 1 ∧ ∀I :αI ∈ R+.

Then, it can be also employed the fact that the first convex coefficient can be written
as:

α0 = 1−
N∑

I=1

αI

and rewriting the approximate DF accordingly, while renaming the SDF as has been
done before, it is obtained:

ρa = ρ0 +
N∑

I=1

(αI ζI )← ∀I : ζI = ρI − ρ0,

which is a result meaning that one can now define an approximate SDF attached to
the minimal expectation value by means of the linear combination:

ζa =
N∑

I=1

αI ζI .

So, in this way nothing prevents that it can be also written:

〈�ζa〉 = ωa − ω0 =
N∑

I=1

αI 〈�ζI 〉 =
N∑

I=1

αI (ωI − ω0) ≥ 0→ ωa ≥ ω0.

This last result can be associated in turn to the following meaning. Considering first
for some system its exact DF set has been ordered according to the ascending values
of some exact expectation value sequence of some Hermitian operator. Then, as a
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consequence, any approximation to the minimal expectation value becomes always
an upper bound of the minimal exact one.

Therefore, a sort of variational principle can be set up for the expectation values of
any Hermitian operator.

In fact, as another facet of this general property, the variational principle, attached
to the ground state energy, can be considered as an intrinsic property of the energy
eigenvalues ordering, based on thermodynamical stability considerations.

Such ordering property, involving any Hermitian operator, which has been previ-
ously disclosed here, might be named as an extended variational principle.

5 The extended HK principle

If the variational principle could be generalized according to the ordering of any
expectation value, under some particular circumstances, then the HK principle can
be extended to some Hermitian operator. Suppose the ascending order of the DF set
is performed according to the expectation values of some Hermitian operator �, as
discussed in the previous paragraph. Then it can be written:

〈�ρ0〉 = ω0.

At the same time, if ρa corresponds to an approximation of the exact DF then it can
be also written:

〈�ρa〉 = ωa → ω0 ≤ ωa → ωa − ω0 ≥ 0

→ 〈�ρa〉 − 〈�ρ0〉 ≥ 0→ 〈�(ρa − ρ0)〉 ≥ 0→ 〈�ζ 〉 ≥ 0.

The same can be said, when the approximate DF ρa is considered an exact DF of some
Hamiltonian: Ha , say, which can be attached in turn to another Hermitian operator
�a . It will be obtained now, in the same way as before:

〈�a (−ζ )〉 = 〈�a (ρ0 − ρa)〉 = ω0
a − ωa ≤ 0← ωa ≤ ω0

a,

which can be rewritten as: −〈�a (ρa − ρ0)〉 = − 〈�aζ 〉 ≥ 0 and can be trivially
summed up with the previous result to yield:

〈(�−�a) ζ 〉 ≥ 0.

Of course, in order to arrive at the same conclusion as the one reached considering the
system energies within HK principle, the operator difference: �−�a has also to be
constructed as different from the zero or null operator.

In this way and under the obvious restrictions already mentioned, one can con-
sider the HK principle to hold in some specific manner for any Hermitian operator
expectation values.
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6 Conclusions

Origin shifts performed within DF sets can be considered as some kind of basic building
block to demonstrate the HKT. In doing so, the HKT appears as a consequence of the
variational principle. Thus, perhaps one can speak in a more general way about the
HK principle too.

Moreover, origin shifts implemented within DF sets, permit to generalize the varia-
tional principle, whenever a Hermitian operator is considered and the DF order follows
a new ordering, related to the associated expectation values of such an operator. Then,
this extended variational principle induces a possible generalization of the HK prin-
ciple, whenever two distinct Hermitian operators can be defined for the exact and
approximate DF.
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